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*. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECRMCAL NOTE D-144 

DETERMINATION OF NONLINEAR PITCHINGMOMENT 

CHARACTERISTICS OF AXIALLY SYMMETRIC 

MODELS FROM FREE-F’LIGHT DATA 

By Maurice L. Rasmussen 

SUMMARY 

An analysis i s  presented f o r  the pitching and yawing motion of a 
symmetrical missile with a nonlinear restoring moment described by two 
terms, the  first proportional t o  the resul tant  angle o f  a t tack,  and the  
second proportional t o  the  cube of the resu l tan t  angle. The solutions 
t o  the nonlinear equations of motion for zero damping and constant roll 
are  found i n  closed form i n  terms o f t h e  e l l i p t i c  in tegra ls  of t i e  f i rs t  
and- third kinds. 

The frequency of the resul tant  pitching and yawing motion is  shown 
t o  be a function of the maximum and minimum resu l tan t  amplitudes as w e l l  
as the proport ional i ty  constants of the cubic res tor ing moment. The 
precession i n  the system due t o  the nonlinear res tor ing moment i s  also 
a function of these parameters. 
approximated as a l i n e a r  function of the square of the m a x i m u m  and minimum 
mpl.it.~des over a large pa r t  of i t s  range o f  variation. 

The frequency of the motion i s  closely 

A rapid method of estimating the cubic restoring-moment coeff ic ients  
from the observed frequency and amplitudes of two independent s e t s  of 
f ree- f l igh t  data  i s  developed and demonstrated. 
approximate linear relat ionship of  the frequency with the  maximum and 
minimum amplitudes of m t i o n .  

The method r e s t s  on the  

INTRODUCTION 

In f ree- f l igh t  range experiments, the  aerodynamic forces and moments 
acting on a missile a re  measured by means of very accurate observations 
of  i ts  motion i n  f l i gh t .  
of  the M c t i o n a l  dependence of these aerodynamic forces and moments on 
the dynamic var iables  of the motion in order t h a t  the solution curves t o  
the equations of motion may be obtained. 
talc-dated f r o 3  the parameters o f  the solution curves t h a t  a re  f i t t e d  
t o  the motion. 

This experimental technique requires a knowledge 

The forces and moments are 
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This method of determining the aerodynamic forces and moments of a 
missile has called f o r  solution curves which are i n  closed form. The 
motion of a missile i n  a free-f l ight  range has thus been t rad i t iona l ly  
described by l i nea r  equations. Since nonlinear terms arise f rom both 
large angles of y a w  and the  presence of second or higher order terms i n  
the aerodynamic moment expansion, the free-f l ight  range technique would 
appear t o  be r e s t r i c t ed  t o  missiles tha t  have l i nea r  moment systems and 
t h a t  f l y  at small angles of yaw. 

The l i nea r  solutions t o  the  equations of motion, however, can be 
well f i t ted t o  many motions which possess nonlinear moment systems or 
f l y  a t  large angles of yaw. 
of  these l i nea r  equations would be the  average or "effective1' values of 
the coefficients of the  parent nonlinear equations. These effect ive 
values show a character is t ic  dependence on the  angle of yaw. Thus i n  
order t o  completely understand the nonlinear motion, as w e l l  as t o  
determine the proper moment parameters by experiment, it i s  desirable 
t o  have an analyt ical  relationship of the dependence of these nonlinear 
forces and moments on the  dynamic variables of the motion. 

This seems t o  suggest t h a t  the  parameters 

Several authors have treated the  problem of nonlinear motion. 
Zaroodny i n  reference 1 has treated the  special  case of c i rcular  yawing 
motion, and a more general motion for cubic s t a t i c  and Magnus moments 
has been considered by Leitmann i n  reference 2. Canning i n  reference 3 
has demonstrated the  analogy between a missile with a nonlinear yawing 
moment and a b a l l  ro l l ing  i n  a sui tably shaped bowl. The most elegant 
treatment of nonlinear motion has been presented by Murphy i n  references 4, 
5 ,  and 6. Murphy at tacks the problem fran the  standpoint of a second- 
order analytic equation i n  a complex variable. The Kryloff-Bogoliuboff 
techniques (ref.  7) are applied t o  t h i s  second-order analyt ic  equation, 
and the resu l t s  are presented i n  the form of an " q l i t u d e  plane." 

The attempts t o  solve the equations of motion f o r  a missile with a 
nonlinear restoring moment have been l i m i t e d  t o  approximate or numerical 
methods., While these methods have proved valuable i n  the  analysis of 
nonlinear motions, the exact var ia t ion of the parameters of motion i s  
not known. For the  case of zero damping and constant roll, however, the 
equations of motion fo r  a symmetrical missile with a cubic yawing moment 
may be solved i n  closed form as a function of the  e l l i p t i c  integrals  of 
the f i r s t  and t h i r d  kinds. The object of t h i s  report  i s  t o  present t h i s  
closed form solution. The l i nea r  moment a l s o  w i l l  be shown so tha t  a 
comparison may be drawn with the nonlinear cases. 

A I  
3 l  
3 
9 

. 

After the equations which r e l a t e  the moment parameters t o  the 
character is t ics  of the motion have been derived, the application t o  t w o  
sets of f ree-f l ight  runs from the Ames supersonic f r ee  f l i g h t  wind tunnel 
w i l l  be demonstrated. 
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NOMENCLATURE 

A 

CD 

CN 

cN, 
A 

9 
Cm 

reference area 

drag coeff ic ient ,  - drag 
SA 

normal force normal-force coeff ic ient ,  
SA 

r a t e  of change of normal-force coeff ic ient  with resu l tan t  angle, 

0, + 0 

restor ing moment restoring-moment coefficient,  
SA 2 

r a t e  of change of restoring-moment coeff ic ient  with resu l tan t  Cmc 

angle: is) 
\ A- 
\ U Y  ,' 

r a t e  of change of restoring-moment coeff ic ient  with time r a t e  
6 Cm 

of change of resultant angle parameter, 

angular veloci ty  parameter, 

Magnus moment coeff ic ient ,  - 

cm, r a t e  of change of  restoring-moment coeff ic ient  with resu l tan t  
A 

C 
%a 

c,cl,c2 constants of integration 

F( 9,k) incomplete e l l i p t i c  integral  of the f irst  kind 

H 

Ix,Iy,Iz 

K(k) 

kl,k2 moduli o f  the e l l i p t i c  integrals 

moments of i n e r t i a  about roll, pitch,  and yaw axes, respectively 

complete e l l i p t i c  integral  of the f i r s t  kind 



axial radius of gyration 

transverse radius of gyration 

reference length 

cubic restoring-moment coefficients, defined by equation (10) 

P2 
M, +4 
mean value of M1e-& over a short trajectory 

projectile mass 
T 

LX 2 - (gyroscopic spin) 
=Y 

angular rolling velocity 

dynamic pressure, $ pV2 

roots of equation (16) 

components of linear velocity of missile along x, y, and z 
directions 

magnitude of missile's velocity 

distance along the trajectory 

angle of attack 

angle of sideslip 

cosine of angle between missile's axis and trajectory 

resultant angle squared, S 

resultant angle between projectile axis and an axis fixed in 
space 

A 
3 
3 
9 



A 
3 
3 
9 

polar  coordinate angle of osci l la tory motion, tan-' 2 P 
P + ia 

H e m ' s  lambda function 

wave length 

arguments of Heuman*s lambda function 

e l l i p t i c  in tegra l  of the third kind 

air densi ty  

resu l tan t  angle of attack, (a2 + P2) 
minimum resu l tan t  angle 

maximum resu l tan t  angle 

? 

1/2 

arg-meats of the e l l i p t i c  integrals  

frequency, radians per unit length along t r a j ec to ry  

der ivat ive of quantity with respect t o  x 

ANALYSIS 

Equations of Motion 

The general equations f o r  a symmetrical missile with zero t r i m  angle 
have been derived by Murphy i n  reference 4. The angles of a t tack  
are  represented by the  r a t i o s  of t he i r  respective transverse component of 
ve loc i ty  t o  the resul tant  velocity,  tha t  is, a = w/V and P = v/V. 
values approach the exact values fo r  small angles. Consider now the 
homogeneous second-order analyt ic  equation of a complex variable f o r  a 
symmetrical missile i n  a nonrouing coordinate system (from re f .  6) : 

a and P 

These 
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where 

I; 

H 

M 

T 

P 

k t  

ka 

Y 

5 '  

p + ia 

- -  P Ix 
IT =Y 

A 
3 
3 
9 

, transverse radius of gyration 

E , ax ia l  radius of gyration 

8 

cosine of  angle between missi le 's  axis  and t ra jec tory  

Assume now, f o r  the  purposes of t h i s  paper, t h a t  the geometric nonline- 
a r i t i es  are  zero; t h a t  i s ,  the f l i g h t  path angle i s  small enough t o  
neglect so t h a t  the values of y and i t s  der ivat ive become y = 1 
and y '  = 0. 

After the polar transformation i s  made, 

5 = 0ei-e = a(cos e + i s i n  e )  

where 
equation (1) i s  transformed in to  a fourth order system of equations of 
r e a l  variables. 

=Members of the Ames Research Center staff have qmstioned the rep- 
resentation of the damping moment i n  equations (2), principal ly  i n  equa- 
t i on  (2b). That equation (2b) may not be correct may be seen by consid- 
ering purely c i rcu lar  motion ( a  = constant, CT' = 0) .  In  t h i s  case, the 
motion being steady, there  should be no evidence of the unsteady deriv- 
a t ive  Cm., yet such terms remain. However, since the present analysis 

and since the treatment o f  the damping i s  only approximate, pr incipal  
a t tent ion being given t o  the s t a t i c  moment, t h i s  question w i l l  not a f fec t  
the resul ts  of t h i s  analysis i n  any important way. 

13 = a? + p2, and the r e a l  and imaginary pa r t s  a r e  separated, 

d 
i s  res t r ic ted  t o  zero damping o r  t o  small damping over a short  t ra jectory,  d 
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A' 
3 
3 
9 

20'8' + oetf + Hoe' - PCP - PTO = o (2b) 

The variables (I and 8 are shown i n  sketch (a); both are functions of 
x, the  distance along the f l i g h t  path. 

C l  

For a completely nonlinear system, a l l  
o f  the  coeff ic ients  H, P, My and T wodd 
be considered functions of u2. This paper 
w i l l  consider only M t o  be a function of 
02 and the  remaining coefficients t o  be 
constant. Moreover, the coefficient T 
w i l l  be considered negligible, t h a t  is, 
T = 0. 
P, w i l l  not be large.  

This implies t ha t  the roll rate, 

G 

Equation (2b) may be integrated t o  
express 8 as a function of x and 19. 
Equation (2b) multiplied by 
T = 0) is 

5 (with 

o r  

d Hx pe& do2 - (+e e * )  =- -  
dx 2 d x  

9- 
Sketch (a) 

( 3 )  

(4) 

where c i s  a constant o f  integration. After the  in tegra l  i n  equation 
( 5 )  has been integrated by par ts ,  8' becomes 

By integration once more between the limits 8 and Bo, and x and +, 
where e(+) = €lo, t he  expression fo r  the polar angle 6 i s  obtained 

P 

where G (x) = ' @eHXdx . 



a . 
The amount of precession i n  a system can be found from equation (7) - as w i l l  be shown l a t e r .  

t o  as the precession equation i n  la ter  p a r t s  of t h i s  report .  
For t h i s  reason, equation (7) w i l l  be referred 

The crux of t h i s  report will l i e  i n  the solution of equation (2a).  
Equation (2a) may be reduced t o  only one dependent variable,  a, by the  
substi tution of equation (6) .  
t i on  (2a) may be reduced by removing the in tegra l  term i n  the equation 
f o r  e t ,  equation (6). This may he accomplished by se t t ing  H = 0; t h a t  
is, the d q i n g  i s  zero. 

Complications i n  the  solution of equa- 

Yawing Motion With Constant R o l l  and No Damping 

When the. damping, H, has been set equal t o  zero, equation (6) may 
be expressed 

and upon subst i tut ion in to  equation (2a),  the  equation for  a becomes 

If the yawing-moment coefficient i s  represented 
and a cubic t e r m ,  then M may be expressed as 

M = -M, - 2MlS 

and equation (9) now reads 

(9) 

by the  sum of a l i nea r  

(10) 

A 
3 
7 
J 

9 

a" = 5 - (Ivb + 7) u - 2MlS 
a3 

When a" has been rewrit ten as 

equation (11) assumes the following form: 
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* 
9 

A 
3 
3 
9 

- 
where 
missiles, and i s  the c r i te r ion  f o r  proper spin s tab i l iza t ion  for s t a t i c a l l y  
unstable missiles. 

Q = & + p2/4 > 0 i s  always sa t i s f ied  fo r  s t a t i c a l l y  s table  

Equation (12) may now be integrated once t o  give 

where c1 i s  a constant of integration. The constant c1 may be 
evaluated from the boundary condition tha t  
do/dx = 0. Thus 

a = am i s  a maximum at  

When both sides of equation (13) have been multiplied by $, t he  
equation becomes 

and upon the  substi tution E = 13, assumes the form 

The square root may now5e taken of both sides of equation (16) and 
the  variables separated. Xtei- ?ategr?.-kin_n_ t.hp solution vould be in  the 
form of an e l l i p t i c  integral .  Before the  integral  can be put i n  standard 
form, however, there  are several  points t o  c lear  up concerning the con- 
t i n u i t y  of dE/dx. 
cubic equation in  E, and, having at l e a s t  one real root, w i l l  take on 
both posi t ive and negative values, depending upon the value of It 
i s  necessary, then, t o  define the domain of E 
or, i n  other words, so  t h a t  dE/dx i s  real. This may be accomplished 
by examining the  roots of  equation (16); t h a t  is ,  the  maximum and minimum 
values of The roots of equation (16) are  

The quantity (dc/dx)2 is  defined (eq. (16) )  as a 

E .  
so t h a t  (dc/dx)2 _> 0, 

E = 02. 
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A 
3 

c 

* 

Case 1: A yawing moment t h a t  grows f a s t e r  than a l i n e a r  moment.- 
For t h i s  case both % and M1 are  posit ive.  From equations (17) it 
can be seen t h a t  t3 > 0 and t 2  > 0. The quantity assumes 
posi t ive or negative values i n  the  following in te rva ls  and i s  shown i n  
sketch (b) .  

($ > 0 

($J2 < 0 

(gJ2 > 0 

(gy < 0 

2 

t 
2 I t. =6- 

f o r  --03 < E < t3  

f o r  t3 < E < t2 

f o r  t 2  < E < tl  

fo r  tl < E <CU 

Sketch (b) 

The domain of E f o r  continuous osc i l la tory  motion w i l l  be 
t 2  5 E 5 tl: 
E = t2 = cro2 
t h i s  i n  mind equation (16) may now be integrated.  

E = t l  = Om2 
w i l l  represent the square of the minimum yaw angle. 

w i l l  be the maximum yaw angle squared, and 
With 

Taking the posi t ive square root of equation (16), separating the 
variables,  and integrating between the limits 
where x ( t2 )  = +: 

E and tz ,  and x and k, 

where 
M1 > 0 
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Equation (23a) may be writ ten i n  terms of tl, t2 ,  and t3, 

where 

t l _>  E 2 t 2  ,> 0 > t3  

The integral  i n  equation (23b) may be transformed in to  an e l l i p t i c  
integral  of the  f i rs t  kind by the  transformation (eq. 235.00, re f .  8) 

t1- t 3  E - t 2  

s in  9 =Jtl - t2 E - t3 

A 
3 
3 
9 

Equation (23b) is  thus transformed into 

where F(cp,kl) i s  an e l l i p t i c  in tegra l  of the first kind 

Although equation (25) i s  the exact solution fo r  equation (16) f o r  
E = $, it i s  actual ly  i n  an inverse form; t h a t  is, x 
function o f  E, ra ther  than E as a function of x. However, the Jacobian 
e l l i p t i c  functions can be used t o  express E as a function of x. 

i s  writ ten as a 

By means of the  Jacobian e l l i p t i c  functions described i n  reference 8, 
equation (2.5) may be inverted t o  read 

r 1 
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r 

A 

3 
3 
9 

where am and sn are the tabulated 
equation (A), E may be wri t ten as 

Jacobian e l l i p t i c  functions. From 
a function of cp 

t2  - t3kL2sin2(P 
1 - k12sin2cp 

€ =  

and E becomes an exp l i c i t  function of x by the use of the e l l i p t i c  
function (27). 

t 2  - t3k12sn2[& JG=-G(x - XJ J 
E = $ =  1 (29) r 

The quarter wave length of the motion can be found when cp = 5[/2. 
The value of (x - xg) i s  then equal t o  1/4 the wave length, (x - xg) = A/4, 
and from equation ( 2 5 )  

where K(k1)  i s  a complete e l l i p t i c  integral  of the  first kind. 

The wave length, A, i s  now seen t o  be a function of tl, t2, t3, &, 
and M1 from equations (30) and (19). Equation (19) i s  rewrit ten here as 

Equation (30 )  may be wri t ten 

Equation (32) i s  p lo t ted  i n  figure 1 and shows the dependency of the wave 
length on %, Do, %, and MA. 

The remaining problem i n  t h i s  case i s  t o  express the  precession 
equation (7) i n  terms of ana ly t ica l  functions. For H = 0 equation (7) 
becomes 

x-xo d(x  - xg) 
$ 

e - e o = -  P 
2 (33) 



1 4  

This equation may also be wri t ten as 

6 - ,go = - P (x  - xg) + c 
2 

From equation ( 2 5 ) ,  dx/dcp may be expressed as 

dx = 1 1 - 
dT & 4- 41 - k12sin2cp 

and by use of equation ( 2 8 ) ,  the  following in t eg ra l  may be evaluated: 

(34) 

(35) 

After a small amount of algebraic manipulation, t h i s  in tegra l  becomes 

The integral  

i s  Legendre's form of the e l l i p t i c  in tegra l  of the  t h i r d  kind. 
use of equation (251 ,  the  precession equation (34) may be expressed 

With the  

(39) 

A 
3 
3 
9 
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L The constant c2 is  defined by equation (22a) and i s  wri t ten here 
as 

and t 3  i s  defined by equation (19). 

The polar angle 8 i s  thus defined as a function of the  e l l i p t i c  
in tegra l  of the t h i r d  kind and a l inear  function of  The e l l i p t i c  
in tegra l  of the t h i r d  kind a l so  a r i s e s  in the analysis of the  dynamics 
of the top, gyroscope, and spherical  pendulum, which a re  analogous t o  
the motion of a missile with a nonlinear yawing moment. 

x. 

I 
3 
3 

Case 2: A yawing moment t h a t  grows slower than a l i n e a r  moment.- 
In the case where the moment grows slower than a l i n e a r  moment, the 
coeff ic ients  M, and M1 are res t r ic ted  t o  the values 
Moreover, i f  the  motion i s  t o  be oscil latory,  then 
from equation (11) , 

M0 > 0 and M1 < 0. 
d2u /ds  < 0, and, 

3 

w 

or, since MI < 0 and c2 = Uo2Um2[(am2 + Uo2)M1 + &,] 

> 

To determine the domain of E or, i n  other words, the range of E 
for  which dc/dx i s  a continuous f'unction, it remains t o  resolve the 
r e l a t ive  magnitudes of tl, t g ,  and t3. From equation (21) it can be 
seen t h a t  t 2 t3  > 0 since tl > 0. From the inequality (42) and 
equation (l9), the  sum of t 2  and t 3  is 

so t h a t  both t 2  and t3 are  posit ive.  By perusing equations (l7), it 
can be seen t h a t  t2 > t3. Now since tl = am2 i s  the  maximum yaw angle 
squared, then t3 = uo2 i s  chosen as the minimum yaw angle squared, so 

. 
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2 t h a t  for Case 2, 
or negative values i n  these intervals and is  shown i n  sketch ( c )  . tl  > t 2  > t3  > 0. The t e r m  (dE/dx) assumes posi t ive 

A 
3 
3 
9 

Sketch ( c )  

The quantity dE/dx w i l l  now be continuous i n  the interval  
t3 _< E F t l ,  and i n  t h i s  range the motion w i l l  be osci l la tory.  
w i l l  become l e s s  and l e s s  s table  as the value of 
the  value of t2. A t  the  point tl = t2 the  missile w i l l  be i n  a s t a t e  
of trim. When E > t2 ,  then the motion w i l l  be unstable and the  missile 
w i l l  overturn. 

The motion 
tl = am2 approaches 

The same procedure may now be applied i n  integrating equation (16) 
as w a s  done i n  Case 1. For Case 2 the  limits of integration are E 
and t3, and x and x, (where x(t3) = +), 

d e l  SE x - x o =  
2 n G  t3  J(t1 - E l ) ( t 2  - E 1 ) ( € 1  - t3) 



A 
3 
3 
9 

This integral  may be transformed into the form of an e l l i p t i c  in tegra l  
of t he  first kind by the  transformation (ref. 8, eq. 233.00) 

Jt: I s i n  $ = 

and equation (43) becomes 

where 

and 

(44) 

and from equation (19) 

Equation (45) may be inverted t o  the form of the Jacobian elliptic 
functions so t h a t  $ becomes a function of x. 

The square of the  resul tant  angle may be expressed as a function of 
from equation (44) 

E = t3 + (tl - t s ) s in2$  (48) 

o r  
r 1 
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Returning t o  equation (451, one fourth of the wave length, A/&, may 
be determined by se t t ing  Cp = 7l/2: 

where K(kg) i s  the  complete e l l i p t i c  integral  of the  first kind. A s  i n  
Case 1, A i s  a function of Om, a,, and %/MI, and may be represented 
graphically when equation (50) i s  put in to  the  dimensionless form 

Equation (51) i s  shown i n  figure 2. 

The equation f o r  the polar angle 8 may now be evaluated. From 
equation (45) dx/d$ becomes 

A 
3 
3 
9 

(51) 

. 

and substi tuting equations (52) and (48) in to  equation (7) fo r  
expression f o r  8 becomes 

H = 0, the 

\I 

P e - eo = ( X  - .o) 

and noting t h a t  



then 

A 
3 
3 
9 

(1 - 5) = (1 - 3 kZ2 

where rI 
y22 = t3/t3 - tg .  The constant c2 may be expressed from equation (23a) 
and is  ident ica l  with the value of c2 f o r  Case 1. 

is Legendre's form of the  e l l i p t i c  i n t eg ra l  of the  t h i r d  kind and 

Case 3: An i n i t i a l l y  unstable moment which becomes s table  with 
increasing yaw angle.- I n  Case 3 the l i nea r  coefficient 
t o  be nonrestoring, Mo<0, and the nonlinear coeff ic ient  MI t o  be 

M, i s  considered - 
restoring, MI > 0.- A s  i n  Case 1, it can be seen from equations (17) t h a t  
il > t2 > 0 > t3. 
in terva l  
the same Term as Case 1. 

The domain of  E f o r  ?nnt,iniiity w i l l  l i e  i n  the  
t2 _> E: 1 t l  and the  solution of t h i s  case w i l l  have exactly 

The diffcrenze :.%ll l i e  i n  the magnii.i~de of t3. 

In  Case 3, from expression (191, t3 i s  bounded by 

t l  + t 2  > -t3 > 0 ( 5 5 )  

whereas i n  Case 1, 

-t3 > 4 ?;a > c) !%! 

Thus the values of the modulus k12 w i l l  be much la rger  f o r  Case 3 
than fo r  Case 1. 
in tegra l  of the  first kind. The value of t Z / t 3  w i l l  a lso be greater  
f o r  Case 3 than Case 1 and w i l l  have a large e f fec t  on the  e l l i p t i c  
in tegra l  of t he  th i rd  kind i n  the equation f o r  t he  polar  angle 

This w i l l  greatly a f fec t  the value of the e l l i p t i c  

8.  

The equations f o r  t he  motion are the  same as Case 1 and are  l i s t e d  
here as 

where 
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and 

uo2 4- um2 > -t3 > 0 

The equation f o r  the polar angle i s  

where is the e l l i p t i c  in tegra l  of the t h i r d  kind and 712 = uo2/t3. 

The motion due t o  a nonlinear pitching moment can be described by 
the use of e l l i p t i c  in tegra ls  of the first and t h i r d  kinds and by the use 
of the Jacobian e l l i p t i c  functions. 
these solutions with the charac te r i s t ic  sine solutions of a l i nea r  analysis.  

It would be in te res t ing  t o  compare 

Linear yawing moment.- When the yawing moment i s  l i nea r ,  the coeffi- 
c ien ts  & and M1 a re  & > 0 and M1 = 0. Equation (16) becomes, f o r  the 
l i nea r  case, 

The zeroes of equation (57) occur a t  
1 

and by use of the value of 
becomes t 2  = uo2. 

c2 from equation (40) with M 1  = 0, t 2  
Equation (37) may be d i r ec t ly  integrated as the  

A 
3 
3 
9 

r 
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nonlinear cases t o  give 

d 
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/-- 
and may be simplified t o  the following equation: 

The frequency for  the l i nea r  case i s  

- 
2 

and i s  a constant. The expression for the  polar angle 8 may be deter-  
mined from the precession equation (7) with 
qL:zttc?n (61) i n t o  the integral .  

H = 0 by subst i tut ing 

This i n t eg ra l  may be integrated d i rec t ly  t o  give 

and from equation (40), c = WUmUo, SO t h a t  the f i n a l  expression i s  

Tne l i n e a r  analysis thus gives t h e  r e s u l t s  i n  the form of the familiar 
c i r cu la r  functions, sine and arctan.  
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Yawing Motion With Small Damping 
Over a Short Trajectory 

In the  study of the motion of a missile i n  a free-f l ight  range, the  
presence of damping may be an important factor  i n  the determination of 
the  s t a t i c  s t a b i l i t y  parameters. 
t ra jectory may be short, and several  approximations may thus be made t o  
adapt the damping factor  t o  analysis f o r  a short  t ra jectory.2 

In the  case of a f ree- f l igh t  range, the  

Consider now equation (6) fo r  0 ' :  

2 2 8e& 
81 P H P 1  1 

c 
This expression must be substi tuted in to  equation (2a) i n  order t o  f ind 
a solution for t he  frequency. 
damping i n  the  system i s  due t o  the presence of the in tegra l  term i n  
equation (6 ) .  The argument of t h i s  in tegra l  i s  always posit ive,  and 
hence the magnitude of the integral  w i l l  increase as the  distance along 
the trajectory increases. The coefficient of t h i s  integral ,  HP/2, how- 
ever, w i l l  i n  general be a small number, so t h a t  the in tegra l  term w i l l  
be negligible at the beginning of the t ra jectory.  If the  damping i s  
small, IHI << 1, and the t ra jec tory  i s  considered t o  be l e s s  than one 
wave length long, then the integral  term i n  equation (6) may be neglected. 

The main d i f f i c u l t y  i n  the  solution fo r  

,, 

Consider now equation (6) t o  be 

fo r  small damping and a short  t ra jectory,  and subst i tute  t h i s  equation 
into equation ( p a )  t o  get  

When M i s  expressed as M = -M, - 2Ml$, equation (66) becomes 

2The question of damping mentioned i n  connection with equations (2a) 
and (2b) should be kept i n  mind a t  t h i s  point. 
coefficient H w i l l  represent the  damping of a system when the damping c 

i s  s m a l l  or when the  motion is  nearly planar and when the  value of 
i s  not a dominant par t  of the value of 

The constant damping 

Cmir 
H. 



23  

A 
3 
3 
9 

. 

It i s  known from l inea r  considerations that  the  damping a f f ec t s  t he  
amplitude i n  exponential form. The following transformation will thus 
be made 

-Hx/2 CY = re 

and equation (67) may be expressed i n  terms of I?: 

where 

Equation (68) i s  now i n  the  same form as equation (9) f o r  zero damping 
except fo r  the  exponential factor  e-& which i s  a coeff ic ient  of r3. 
This factor w i l l  have t,he apparent effect  of changing the  value of 
the distance along the t ra jec tory  increases. 
expected t o  vary along the t ra jectory.  This sho-dd d s o  be expected t o  
hzppen since the  amplitu&e of motion i s  changing. 

M1 as 
Thus the  frequency should be 

When the  following expression i s  used, 

2 dr 

equation (68) may be integrated once t o  obtain 

where cg i s  the constant of integration. The in tegra l  i n  equation (69) 
may be integrated by par t s  so tha t  

A s  before, f o r  small damping ( / H I  << 1) and a short  t ra jectory,  the  in tegra l  
t e r m  on the right-hand side of equation (70) w i l l  be considered negligible 
compared t o  the integrated t e r m  which precedes it. Furthermore, the  vari- 
a t ion  of the  factor  M1e-% over a short t ra jec tory  f o r  s n d l  damping will 



24 

be small, so t h a t  the fac tor  
M 1  = Mle-& which i s  a mean value over the t ra jec tory .  
siderations, equation (69) may be replaced by 

Mle-& can be replaced by a mean fac tor  - 
With these con- 

This equation has the same form as  the  equation f o r  constant roll and 
zero damping, equation (l3), and it may be solved i n  the same manner. 

One important consequence w i l l  be suffered by replacing M1e-& by 
the mean fac tor  Q1. The main e f fec t  of M 1  on the motion i s  on the 
magnitude of the wave length. When M1eeRx i s  replaced by the constant 
M1, the wave length w i l l  be r e s t r i c t ed  t o  a constant mean value of the  

A 
3 

9 

- 
t ra jectory,  and only the amplitude u w i l l  vary. For small damping, 3 
however, the change i n  frequency of motion will be small, and the e f f ec t  
w i l l  be negligible over a short  t ra jectory.  

Equation ( 7 l )  may now be solved by using the subst i tut ion r2 = 7 

and using the r e s u l t s  of the section on nonlinear motion f o r  zero damping 
and constant roll. This may be done by replacing by rm, uo by ro, 
and 
The resu l t s  w i l l  be then t h a t  the amplitude of motion w i l l  vary exponen- 
t i a l l y ,  and the  nonlinear coeff ic ient  w i l l  assume a mean value 

E by T, and using the same derived expressions f o r  the special  cases. - 
- 
M1. 

DISCUSSION OF ANALYSIS 

The re la t ions  governing a nonlinear motion have been derived f o r  a 
symmetrical missile with four d i f fe ren t  cases of a cubic yawing moment. 
Several important charac te r i s t ics  of the  motion can now be examined i n  
de t a i l .  

The Frequency of Motion 

The frequency of o sc i l l a t ion  of a missile i s  an important parameter 
i n  the  determination of the coeff ic ients ,  &, and MI, from f ree- f l igh t  
data.  The frequency of the motion i s  defined as 

- 2n we - - 
h 

where h i s  the  wave length. The subscript  e i s  used so t h a t  equa- 
t i on  ( 7 2 )  may also be used as the e f fec t ive  frequency of a l i nea r  motion. 
Thus an effect ive l i nea r  value may be calculated from the equation 

t 
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where (2% is t h a t  constant value of C,, which would give the same 
frequency i n  a l i n e a r  system as would occur i n  the nonlinear system. 
Equation ( 7 2 )  may now be represented as a function of 
by u t i l i z i n g  the equations f o r  h/4 f o r  the three nonlinear cases. For 
Case 1, equation (30) may be substituted in to  equation ( 7 2 )  t o  give 

%, ao, &, and Ml 

This equation may be writ ten i n  dimensionless form as 

ylllclI n m r l ~ + i n n  cyIuwvAvI- (19) for t3 i s  used, t h i s  equation becomes 

. 

where 

Equation (74) i s  plot ted i n  f igure 3. 
i s  thus seen t o  be a function of the dimensionless parameters 
and Mlum2/&. It may be noticed from f igure 3, t ha t  i n  sp i t e  of the 
nonlinear motion, these curves appear t o  be nearly s t r a igh t  l i nes .  
would suggest t h a t  i f  equation (74) were expanded i n  a ser ies ,  it could 
be adequately approximated by the f i r s t  l i nea r  terms. 
e l l i p t i c  in tegra l  of the first kind i s  expanded i n  a se r i e s  and divided 
term by term in to  equation (74), the f i r s t  two terms of the resul t ing 
se r i e s  give 

The frequency parameter, me2/%, 
ao2/um2 

This 

Thus i f  the complete 

(75)  

The d e t a i l s  of t h i s  se r ies  expansion are shown i n  the appendix. 
be seen from the comparison o f  equation (75)  with f igure 3 t h a t  the 

It can 
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I 
approximation i s  very accurate fo r  values of uo2/am2 near unity. HOW- 
ever, f o r  cro2/%2 near zero, the equation f o r  we2  would approach the I value 

The difference between equations (76)  and (75), however, is  small. 

An equation f o r  the frequency f o r  Case 2 can be derived from equa- 
t ion  (30)  i n  a m e r  analogous t o  t h a t  of Case l. This equation is  

where 

Equation (77)  i s  p lo t ted  i n  f igure 4. As i n  Cases 1 and 3, these curves 
a re  nearly l i nea r  fo r  most of t h e i r  length and deviate from l i n e a r i t y  a t  
the smaller values of We'/%. 
f o r  the l inear  portion by the expression 

The curves i n  f igure 4 can be approximated 

ue2 = 
+ 2 (1 + %I2 

This expression may be ju s t i f i ed  graphically from f igure 4 and i s  also 
obtained by retaining the first two terms of the s e r i e s  expansion shown 
i n  the appendix. 

I - Case 3 has essent ia l ly  the same solution as Case 1, except t h a t  
M, < 0. 
convenient form when multiplied by 

Equation (74) w i l l  s t i l l  apply, but w i l l  be placed i n  a more 
@/Mlum2 Thus, f o r  Case 3 
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c 
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. 

k12 = 

0O2 

am2 
1 - -  

Equation (78) i s  plot ted i n  figure 5 .  The frequency We2 i s  p lo t ted  as 
a function of & / M l s n 2  f o r  Case 3 rather than M=am2/& as i n  Case 1 
so t ha t  the special  case of = 0 could be represented fo r  Case 3. In  
addition, & / M l h 2  

- 
has a l imited value as is  shown i n  f igure 5.  

The curves f o r  equation (78)  i n  figure 5 are  again shown t o  be nearly 
l i n e a r  except at the small values of Equation (73) may then 
be used as an approximation fo r  the l inear  portion of the curves. Equa- 
t i on  (75)  gives a close approximation f o r  values of 
1/2. For values of uo2/om2 near zero, the l i n e a r  portion of the curve 
can be more accurately defined as  

we2/Mlsn2* 

Uo2/Om2 greater  than 

Equations analogous t o  equation (79)  could be determined f o r  intermeciiste 
values of by calculating the curves from equation (78) and then 
approximating the slope of the l inear  portion of the curve by graphical 
means. 

oo2/om2 

Expressions of the form of equation (75)  w i l l  be very valuable i n  
the evaluation of $ and M 1  from experimental data. The application 
of tnese re la t ions  w i l l  5e demnstrated i n  a l a t e r  section. 

Angular Motion i n  the  OG$ Plane and Precession 

The resul tant  angle o of the p o l a r  coordinates of the pitching and 

8, which is defined i n  general by equation ( 7 ) ,  
yawing motion, u and 8, has been discussed, and a t ten t ion  w i l l  now be 
turned t o  the  polar angle 
and i n  par t icu lar  for  Cases 1-4 by equations ( 3 9 ) ,  (54), and (64). 
t h i s  section, the  four cases f o r  zero damping w i l l  be analyzed. 

In 

The general expression for  the polar ro ta t ion  i s  given by equa- 
t i on  (33) and i s  wri t ten here as 
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The main e f fec t  of the r o l l ,  P, may be seen from t h i s  equation. The 
e f fec t  of P i s  seen t o  be l i n e a r  with respect t o  the distance along the 
t ra jec tory  (x - k). The r o l l  w i l l  thus present l i t t l e  d i f f i c u l t y  i n  the  
analysis, and the main in t e re s t  w i l l  be devoted t o  the in tegra l  term i n  
the polar angle equation. w i l l  be 
considered zero. 

In the remainder of t h i s  section, P 

The simplest case of polar motion i s  represented by the  l i nea r  yawing 
moment, and the polar angle i s  expressed by equation (64). 

A 
3 

9 

Comparison of t h i s  equation with equation (61) shows t h a t  8 - eo 
i s  exactly i n  phase with the motion of the  resu l tan t  angle u. The amount 3 
of precession i n  the system i s  thus zero. 

I n  order t o  study the amount of precession i n  the three nonlinear 
cases, it w i l l  be convenient t o  study the amount of polar ro ta t ion  f o r  a 
quarter period of pitching and yawing motion. In  t h i s  way the e l l i p t i c  
integrals  of the t h i r d  kind w i l l  be complete, and may be evaluated eas i ly  
from tables.  

Consider now the polar rotat ion fo r  Case 1, where the yawing moment 
grows fas te r  than a l inea r  moment. This r e l a t ion  i s  given by equation ( 3  

where n(q, kI2/rl2, k l )  i s  &n e l l i p t i c  i n t eg ra l  of t he  t h i r d  kind 

For a quarter period in the yawing frequency, cp equals s/2, and the 
above equation may be expressed with the help of equation (30) as 

where n(k12/712, k l )  i s  a complete e l l i p t i c  i n t e g r a l  of t he  t h i r d  kind. 
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The complete e l l i p t i c  in tegra l  o f t h e  t h i r d  kind may be expressed as  
a function of H e m ' s  lambda function, &(v,k), which i s  a tabulated 
function. 
t o  the  lambda function by equation 410.01 i n  reference 8: 

The complete e l l i p t i c  integral  of the t h i r d  kind may be re la ted  

where K(k1) is  a complete e l l i p t i c  integral  of t he  f irst  kind, and 

s i n  =J- k12 

when equation (82) i s  substi tuted into equation (81) and 
expressed as functions of 
the simple form 

c and t3 are 
urn2, ao2, and &/MI, equation (81) reduces t o  

s, - 80 = 2 %(tll,kl) (83) 

where lb (q l ,k l j  i s  ~emlan's i m b ~ ~ ,  ~ r n c t t e ~ ,  m ~ .  

s i n  q 1  

Equation (83) i s  shown grapnically i n  r igize 5 .  If there were no precession 
i n  the system, ern - 8, 
precession i n  the  system due t o  the nonl inear i t ies  i n  the  yawing moment w i l l  
be the difference between 90' and the actual value of The polar 
ro ta t ion  for  a quarter period, (6, - G o ) ,  w i l l  always be l e s s  than 90' f o r  
Case 1. In  addition, it can be seen t h a t  the amount of precession var ies  
subs tan t ia l ly  with the value of Oo2/Um2 

would be identically equal t o  90°. The amount of 

62, - 8,. 

Now consider Case 2 i n  which the yawing moment grows slower than a 
l i n e a r  moment. 
t i o n  (54) and i s  expressed here f o r  zero r o l l  as 

The polar rotat ion for Case 2 is  represented by equa- 
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I where 

The polar rotat ion f o r  a quarter period of yaw-angle frequency may 
be determined at  $ = n/2, so t h a t  

where n(kz2/Yz2, k2) i s  a complete e l l i p t i c  in tegra l  of the  t h i r d  kind. 

The complete e l l i p t i c  in tegra l  of  the t h i r d  kind may be placed i n  
the form of  Heman's lambda function by equation 411.01 i n  reference 8. 
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where 

and 

1 s i n  712 = 

Upon substi tution of t h i s  relationship in to  equation (84) and noting 
a$ = k22/y22 and t2 = -(am2 + oO2 + &/MI),  t he  resul t ing equation t h a t  

may be written as 

( Mc2) (1 + $) 
1 - (- y)(. + * $) em - e, - - - K(k;?) + g(1 - &) ( 8 6 )  a0 

where 

s i n  q2 = 5 

and 

. 
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(1 - g)(- y) 
1 - (- y) (1 + 2 s) kz2 = 

Figure 7 i l l u s t r a t e s  equation (86). 

Case 2 has two trim points f o r  planar motion, and these points occur 
at  
i s  unstable. 
w i l l  cease t o  be restor ing and the - missile w i l l  overturn. 
um2 has exceeded the value 
w i l l  ex i s t ,  depending upon the value of the minimum yaw angle. 
be seen from figure 7 where the curve f o r  c i rcu lar  motion, Uo2/Um2 = 1, 
goes t o  i n f i n i t y  at  -MlUm2r& = 1/3. 

S = 0 and u2 = -&/2Ml. The second t r i m  angle i n  t h i s  case, however, 
Once the yaw angle has exceeded 6 = -b/2Ml, the moment 

Moreover, once 
= -&/3M1, a precarious type of s t a b i l i t y  

This may 

Figure 7 indicates t h a t  circular motion for  $ > - %/3M1 may not 

The 
ex is t ,  but must have an e l l i p t i c a l  n a t u e ,  -&ere t h e  ratio of maximum and 
minirrmi y&x m g l e s  i s  r e s t r i c t ed  t o  the values shown ;n f igure 7. 
minimum yaw angle i s  limited t o  the value 

- 
uo2 < - X o / 3 M i .  

The equations f o r  Case 3 (an i n i t i a l l y  unstable yawing moment which 
becomes more s table  with increasing yaw angle) will have a form similar 
t o  tha t  of Case 1. The difference i n  the equations, of course, i s  tha t  
the parameter Mlqn2A is negative. The value of Bm - 8, f o r  Case 3 
w i l l  be expressed by equation ( 8 3 ) .  

where 

and 

s i n  v1 = 

k12 = 

U02 

%12 
1 - -  

%e above expressions are plot ted i n  f igure 8 and show curves tha t  are  
charac te r i s t ica l ly  different  from Case 1. 
i s  t h a t  a s t a t e  of planar motion may ex i s t  i n  which the minimum yaw 

The important factor  i n  Case 3 



angle, a,, i s  different  from zero. 
by examining the  coefficient 
The value of c2 i s  

This pa r t i cu la r  motion may be studied 
c of the in tegra l  term i n  equation ( 3 3 ) .  

I For planar motion, c2 is  equal t o  0, and the obvious case occurs at  
uo = 0. However, c may also vanish at  the point where 
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A t  these values of -&/M1Um2, S, - eo becomes zero, as i s  shown i n  
f igure 8. This type of planar motion may occur because there  a re  two t r i m  
points for Case 3. These points ex i s t  where 0-2 = 0 and u2 = -&/2M1 
and are  the values of yaw f o r  which the yawing moment i s  zero. Again, as 
i n  Case 1, S, - eo i s  l e s s  than 90'. 

APPLICATION OF THEORY TO DATA 

Once the ana ly t ica l  solutions of a given type of motion have been 
determined, t h e  parameters of the solution may be found f o r  a pa r t i cu la r  
missile by f i t t i n g  the  curves t o  experimental data. This i s  bes t  accom- 
plished by a curve-fi t t ing method such as a least-squares technique. 
There are  times, however, when a quick estimation of the  s t a b i l i t y  param- 
e t e r s  i s  desirable. In  t h i s  section a method of rapidly estimating the 
parameters and M 1  from a knowledge of the frequency and amplitudes 
of the motion w i l l  be demonstrated. 

Expressions of the type shown by equations (76) and (79) have been 
shown t o  represent the frequency of motion as a l i n e a r  function of 
&, M1, and 4n2 over nearly the en t i r e  range of frequency values. 
expressions give a very convenient as well as accurate r e l a t ion  between 
the  parameters and M1. The l i n e a r i t y  and s implici ty  of equations (76) 
and (79) suggest the poss ib i l i t y  of solving fo r  M1 and 6 simultaneously 
from two independent equations such as these.  Equations (76) and (79) a re  
s ta ted  here fo r  the cases they represent (small values of 

These 

ao2/am2). 

Cases 1 and 2: 
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Similarly, equation (75) would give a b e t t e r  approximation f o r  large values 
of ao'/Um'* 

The two independent simultaneous equations required f o r  the  determi- 
nation of 
experimental runs under l i k e  conditions. 
given by the  expression 

&, and M1 may be found fromthe da ta  of two independent 
The value o f  &, however, i s  

p2 
& = M O + -  

4 

where P i s  the  gyroscopic spin. 
- 

Tn order fo r  & t o  have the  same value i n  each of the  two s i m u l -  
taneous equations, P2/4 
negligibly small compared t o  &. A t h i r d  ;;lore general a l ternat ive i s  
t h a t  the  gyroscopic spin be known for each run. 
value of p2/4 i s  merely added t o  each equation and MO replaces & 
as the  second unknown. 

m u s t  be the szne i ~ ?  each i ' i i i i  zir else it mi~st. he 

For t h i s  case, a known 

A word should a l s o  be included on the e f f ec t  of damping i n  the system. 
The analyt ical  section on damping i n  t h i s  paper demonstrates tha t  the 
values &, MI, Om, and go a h u d d  bz repl.zce6 by +.he analogous values 
%-(H/ 4 L  Rl, I?,, and ro The 
e f f ec t  of damping on the frequency over a short  t ra jec tory  w i l l  be 
negligible 

- 
when there i s  damping i n  the  system. 

This method w i l l  be demonstrated by applying it t o  two runs, A and B, 
f rom the Ames supersonic free f l igh t  wind tunnel. 
of these two runs are  shown i n  figures 9 and 10. The free-stream Mach 
number w a s  9.6. 
minimum amplitudes are shown below. 

The resul tant  amplitudes 

The estimated quarter wave lengths and the  maximum and 

Run A Run B 

= 4 . 3 5 O  = 6.250 

0, = oo uo = 0.75' 

h/4 = 494 in .  A/4 = 314 in .  

The gyroscopic spin i n  both runs was unknown, but since the models were 
ax ia l ly  symmetric and were sabot-launched from a smooth-bore gun, it w a s  
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assumed t o  be negligible.  
the  outset since the t r a j ec to r i e s  were so short .  
assumptions would be tes ted  by the qual i ty  of the f i t t e d  curves. 

The damping was assumed t o  be negligible at 
The v a l i d i t y  of these 

Since the  par t icu lar  type of nonlinear pitching and yawing moment 
was not known f o r  t h i s  model, equation (76) was first used, and the model 
w a s  found t o  come under Case 3; t h a t  is, the moment w a s  i n i t i a l l y  unstable, 
but became more s table  with increasing amplitude. This new knowledge and 
equation (79)  were applied t o  the  two cases, and the simultaneous equations 
were 

R u n  A 0.00308 = 1.10& + 0.00831~1 

from whence the  values of and M1 were calculated t o  be 

&, = -0.000472 

The moment curve corresponding t o  these coeff ic ients  i s  given i n  f igure 11, 
and it shows a very pronounced degree of nonlinearity.  
lengths for these values of and M1 
values of and M1 in to  the exact equation ( 3 0 ) .  "he checked values 
of A/4 for runs A and By respectively, were 41.03 fee t  and 26.04 fee t ,  
showing the value of the approximate equation (79). 

The quarter wave 
w e r e  checked by subst i tut ing these 

The amplitude curves were calculated using equations (23) and (28) 
and are  compared with the experimental data and with the  amplitude curve 
t h a t  would be produced by a l i n e a r  moment with the same frequency i n  
f igures  9 and 10. The fit shown i n  figure 9 f o r  run B i s  shown t o  be 
excellent,  and the comparison with the l i n e a r  curve i l l u s t r a t e s  the 
possible discrepancies t h a t  can be found when a l i n e a r  moment i s  assumed 
f o r  the system. 
c-ibic curve does not fit the  data as  well i n  t h i s  run as it does for  run B. 
The f i t t e d  curve fo r  run A, however, i s  within the accuracy of the data. 
A possible reason for  t h i s  discrepancy between the data and the f i t t e d  
cubic curve i s  t h a t  the wave length i s  not d i s t i n c t l y  shown in  run A as 
it was in  run B. 
the  data  could be extended through 
It was estimated f o r  several  d i f fe ren t  fa i r ings ,  and the bes t  value was 
demonstrated i n  t h i s  paper. 

Figure 10 also i l l u s t r a t e s  t h i s ,  although the  f i t t e d  

Since run A w a s  planar, however, a fa i red  curve through 
CY = 0, and A/& could be estimated. 
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The qual i ty  of these two f i t s  would lead one t o  believe tha t  the  
damping w a s  s m a l l .  
ve r i fy  t h i s .  
nique for estimating the  cubic moment coefficients f r o m  observations of 
the wave length and maximum and minimurn pitching amplitude when two runs 
are  available. 

A run of a longer t ra jectory would have t o  be made t o  
The method as it stands, however, i l l u s t r a t e s  a rapid tech- 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., Oct. 12, 1959 
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APPENDIX A 

SERIES EXPANSION OF TRE FREQUENCY EQUATIONS 

The equation f o r  the frequency of motion f o r  Cases 1 and 3 i s  given 
by equation (73) 

w(2+$)+1 
we2 - + b 
% 4  K(kl) 

- - -  
A 
3 

9 

The complete e l l i p t i c  in tegra l  of the first kind may be expanded in  
the following ser ies :  3 

and fo r  
only the f i r s t  two terms. 

k2 < 1/2, a suf f ic ien t  approximation may be made by retaining 
Thus 

K(k) = $ (1 + $) 
The modulus k12 may be expressed as  

so t h a t  equation (3) may be writ ten 

Substi tuting expression (4) in to  equation (a), the  new expression becomes 
1 
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A 
3 
3 
9 

Dividing denominator in to  numerator, equation (45) becomes 

It can be seen from f igure 3 t ha t  expression (A6) i s  a good approximation 
for Case 1 when only the first two terms are  used. 
a re  a lso a good approximation f o r  Case 3 when 
i n  f igure 5 .  For values of uo2/%2 near zero, however, the l i n e a r  
segment of thz  curve approaches the value 

The first two terms 
uO2/am2 > 1/2 as i s  seen 

Expression (A7) was determined by measuring the  slope of the l i nea r  segment 
of the uO2/um2 = 0 curve in figure 5. 

The se r i e s  expansion f o r  Case 2 m y  be found i n  a manner analogous 
t o  tha t  of Cases 1 and 3. 
mation t o  the complete e l l i p t i c  integral  of the first kind. 
h w e ~ e r ,  t.he modulus kZ2 i s  expressed as 

Equation (A3)  w i l l  again be used as an approxi- 
For Case 2, 

Substi tuting t h i s  value in to  equation ( A 3 ) ,  the  expression may be wri t ten 

Subst i tut ing t h i s  value in to  equation (79) the  equation f o r  the frequency 
becomes 



38 

and i f  the  denominator is  divided in to  the numerator by t e r m ,  equation (A8)  
may be written i n  ser ies  form as 

A 
3 
3 
9 

. . .  (A9) 
Mo M ,  

The f i r s t  three terms of t h i s  series are exactly the  sane as were obtained 
f o r  the f i rs t  three terms of the ser ies  f o r  Cases 1 and 3. It may a l s o  be 
seen that only the first two terms of equation (A9) describe the l i nea r  
segments o f t h e  curves i n  f igure 4. 



. 39 

REPEXENCES 

1. Zaroodny, Serge J., and Bomberger, E a r l  E.: Spiral  Yawing Motions 
of 81m M56 Shell  - A Study i n  Non-Linear Theory. 
Aberdeen Proving Ground, Md., May 1953. 

B. R. L. Rep. 682, 

2 .  Leitmann, George: Nonlinear Equations of  Motion of  a Spin-Stabilized 
Missile Solved by a Perturbation Method. 
A%. 9, 1954- 

NAVORD Rep. 3364, NOTs 940, 

3. Canning, Thomas N.: A Simple Mechanical Analogue For Studying the 
Dynamic S tab i l i t y  of Aircraft  Having Nonlinear Moment Character- 
i s t i c s .  NACA TN 3125, 1954. 

4. Murphy, Charles H.: The Measurement of Non-Linear Forces and Moments 
B. R. L. Rep. 974, Aberdeen Proving by Means of  F’ree Flight Tests. 

Ground, Md.,  Feb. 1956. 

5 .  Murphy, Charles H.: Prediction of the Motion of Missiles Acted on by 
iloii-Liiiear Forces m d  Yomnts .  R.  R .  L. Rep. 995, Aberdeen Proving 
Ground, w,, Oct. 1956. 
*I 

6. Murphy, Charles H.: The Prediction of Nonlinear Pitching and Yawing 
Motion of Symmetric Missiles. Jour.  Aero. Sci., vol. 24, no. 7, 
J d Y  1-957, PP. 473-479. 

7. Minorsky, N.: Introduction t o  Non-Linear Mechanics. J. W. Edwards, 
1-947. 

8 .  Byrd, Paul  F., and Friedman, Morris D.: Handbook of E l l ip t i c  Integrals 
f o r  Engineers and Physicists. Springer-Verlag, Berlin, 1954. 

. 



SB 

U 

c 

41 

A 
3 
3 
9 

UJ 
u) 
a3 
c 
0 
u) 
c 
a 

U 

- 
.- 

E .- 
c 

E 
b 
4 

6 
-I* 

- P  

2.0 r 

0 .2 .6 .4 e 
=0 

.8 I .o 

-1.0 

-0.5 
0 
0.5 
I .o 
2 

5 

Q) 

Figure 1.- Wave-length parameter as a function of amplitude ratio for Cases 
1 and 3.  



42 

a 

u) 
u) 
al 
c 
0 
v) 
c 
al 

U 

- 
.- 

€ .- 
c. 

E 
b 
x 

-I* 

I .6 

1.2 

.8 

.4 

0 
0 

I I I I I 
.4 .6 - qo2 

Q rn2 

.8 I .o 

4 

5 

10 

00 

Figure 2.- Wave-length parameter as a function of amplitude r a t i o  f o r  Case 2 .  

A 
3 
3 
9 



A 
3 
3 
9 

u) 
u) 
a, 
c 
0 
fn 
c 
a, 

- 
.- 

E -- 
U 
" 

16 

12 

8 

$ff 
4 3 

0 

3 C, = -M,u  - 2 M , c  P A  L 
2 m k t 2  

0 I 2 3 4 5 

MI - urn2 , dimensionless 
MO 

I 

0.5 

0 

Figure 3.- Frequency parameter versus amplitude parameter f o r  Case 1. 
c 



44 

I .o 

.8 

- .4 
01 

.2 

0 
0 . I  .2 .3 .4 .5 

, dimension less 
M O  

Figure 4.- Frequency parameter versus amplitude parameter f o r  Case 2. 

A 
3 
3 
9 



A 
3 
3 
9 

In 
In 
Q, 

c 
0 
In 
c 

- 
.- 

E .- 
0 
L -.p 
r 

2 

! 

0 

-- M o  ,dimensionless 
M, urn 

Figure 5.- Frequency parameter versus amplitude parameter for Case 3. 



46 

I 2 3 4 5 

A 
3 
3 
9 

. 
Figure 6.- Polar r o t a t i o n  f o r  a quarter  period f o r  Case 1. 



c 
47 

A 
3 
3 
9 

- =0 0. I 0.2 0.3 0.4 0.5 

Figure 7.- Polar rotation for a quarter period for Case 2. 



48 

100 

80 

cn 
a, 

CT 
a, 
0 

?! 60 

20 

n 
'0 0.5 I .o 1.5 2.0 2.5 

M,  %12 

Figure 8.- Po la r  r o t a t i o n  for a quarter period for Case 3. 

A 
3 
3 
9 

. 



?B 

49 

c 

A 
3 
3 
9 

0 



t 

L 
0 0  

\ ‘  

l i  

f 

.- 
c 

x 
c 

0 
u aJ 
t 

.- 
E 
t 

aJ r 
t 

0 
c 
0 
0 

aJ 
0 c 
0 
v) 

D 

- 

t 

.- 

A 
3 
3 
9 

1 



.O c 

.O f 

.Od 

.o: 

.o: 

.o 

- -0 
0 2 4 6 8 

Resultant angle, Q , degrees 

Figure 11.- ivioinent r a v e  for mns A and B. 

10 

NASA - Langley Field, Va.  A-339 


